Block Interpolation: A Framework for Tight Exponential-Time Counting Complexity
نویسنده
چکیده
We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis #ETH introduced by Dell et al. (ACM Transactions on Algorithms, 2014). Our framework allows us to convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus ruling out algorithms with running time 2o(n) on graphs with n vertices and O(n) edges. As exemplary applications of this framework, we obtain tight lower bounds under #ETH for the evaluation of the zero-one permanent, the matching polynomial, and the Tutte polynomial on all non-easy points except for one line. This remaining line was settled very recently by Brand et al. (IPEC 2016).
منابع مشابه
Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP
Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #Phard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counti...
متن کاملParity Separation: A Scientifically Proven Method for Permanent Weight Loss
Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect matchings M in G, weighting each matching M by the product of weights of edges in M. If G is unweighted, this plainly counts the perfect matchings of G. In this paper, we introduce parity separation, a new method for reducing PerfMatch to unweighted instances: For graphs G with edge-weights 1 and −1, we co...
متن کاملExtended Block Integrator for First-Order Stiff and Oscillatory Differential Equations
In this paper, we consider the development of an extended block integrator for the solution of stiff and oscillatory first-order Ordinary Differential Equations (ODEs) using interpolation and collocation techniques. The integrator was developed by collocation and interpolation of the combination of power series and exponential function to generate a continuous implicit Linear Multistep Method (...
متن کاملSuccinctness of Regular Expressions with Interleaving, Intersection and Counting
Studying the impact of operations, such as intersection and interleaving, on the succinctness of regular expressions has recently received renewed attention [12–14]. In this paper, we study the succinctness of regular expressions (REs) extended with interleaving, intersection and counting operators. We show that in a translation from REs with interleaving to standard regular expressions a doubl...
متن کاملExponential Time Complexity of Weighted Counting of Independent Sets
We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes xk. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015